OSCILLATION OF SECOND ORDER LINEAR DELAY
DIFFERENTIAL EQUATIONS
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ABSTRACT. In the present paper the problem of oscillation of all solutions of
the second order linear delay equation

u”(t) + p(t)u(r()) =0

is investigated, where p is a nonnegative locally summable function. For this
equation a general oscillation criterion is obtained showing the joint contri-
bution of the following two factors: the presence of the delay and the second
order nature of the equation. Using this criterion, effective sufficient oscillation
conditions are derived. Some of them concern delay equations only, and others
involve ordinary differential equations as well . A number of known results,
in particular a generalization of well-known Hille’s criteria to delay equations,
are improved. Several examples illustrate that some of the results obtained
are best possible in a sense.

1. INTRODUCTION

Consider the linear second order delay equation
(1.1) u”(t) + p(t)u(r(t)) =0,

where p : Ry — Ry is locally integrable, 7 : R, — R is continuous, 7(t) <t for
t >0, 7(t) — +oo as t — +oo and

(1.2) mes{s > t:p(s) >0} >0 fort=>0,

where mes denotes the Lebesgue measure on the real line. These assumptions will
be supposed to hold throughout the paper.
Let Tp = min{r(¢) : t > 0} and

Ty () =sup{s 2 0: 7(s) <t} for t2=To.

Clearly 7 _,, () 2 tfort = To, Ty is nondecreasing and coincides with the inverse
of 7 when the latter exists. Besides, put 7_, = T(_1) ©T(_1)"

A continuous function u : [to, +oo[— R is said to be a solution of (1.1) if it is
locally absolutely continuous on [Ty (t0), +co] along with its derivative and almost
everywhere on [7,_,, (o), +o0] satisfies (1.1). A solution of (1.1) is said to be proper
if it is not identically zero in any neighbourhood of +co. A proper solution is called
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oscillatory (or it is said to oscillate) if it has a sequence of zeros tending to +oo.
Otherwise it is called nonoscillatory.

We say that the equation (1.1) is oscillatory if each one of its proper solutions
oscillates. Otherwise we call (1.1) nonoscillatory.

The present paper is devoted to the problem of oscillation of (1.1). For the case
of ordinary differential equations, i.e. when 7(t) = t, the history of the problem
began as early as in 1836 by the work of Sturm [16] and was continued in 1893
by A. Kneser [11]. Essential contribution to the subject was made by E. Hille, A.
Wintner, Ph. Hartman, W. Leighton, Z. Nehari, and others (see the monograph
by C. Swanson [17] and the references cited therein). In particular, in 1948 E. Hille
[6] obtained the following well-known oscillation criteria.

Let
+00
(1.3) limsupt / p(s)ds > 1
t—+40c0 t
or
+o0 1
(1.4) liminf ¢ ft pls)ds > 7,

the conditions being assumed to be satisfied if the integral diverges. Then (1.1) with
7(t) =t is oscillatory.

For the delay differential equation (1.1) earlier oscillation results can be found
in the monographs by A. Myshkis [14] and S. Norkin [15]. In 1968 P. Waltman
[19] and in 1970 J. Bradley [1] proved that (1.1) is oscillatory if [ + p(t)dt = +oo.
Proceeding in the direction of generalization of Hille’s criteria, in 1971 J.Wong [21]
showed that if T(t) > of fort > 0 with 0 <a = 1, then the condition

“+00 1
(1.5) lgg}igtft p(s)ds > s
is sufficient for the oscillation of (1.1). In 1973 L. Erbe [2] generalized this condition
to

t——+00 8 4

(1.6) lim'mfif[‘i.cxJ 7-(S)p(s)ds > 2

without any additional restriction on 7. In 1987 J. Yan [18] obtained some general
criteria improving the previous ones.

An oscillation criterion of different type is given in 1986 by R. Koplatadze (7]
and in 1988 by J. Wei [20], where it is proved that (1.1) is oscillatory if

t

(1.7 lim sup 7(s)p(s)ds > 1
t—+oo Jr(t)

or

t
1
(1.8) liminff 7(s)p(s)ds > —.
(t) e

t—+00
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The conditions (1.7) and (1.8) are analogous to the oscillation conditions due to
Ladas, Lakshmikantham and Papadakis [13], and Koplatadze and Chanturia [9l,
respectively,

¢

(1.9) L := limsup p(s)ds > 1,
t—too Jr(t)

i
(1.10) [ := lim inf p(s)ds > %

t—+0c0 ()
for the first order delay equation
(1.11) o' (t) + p(t)u(r(t)) = 0.

The essential difference between (1.5)—(1.6) and (1.7)-(1.8) is that the first two
can guarantee oscillation for ordinary differential equations as well, while the last
two work only for delay equations. Unlike first order differential equations, where
the oscillatory character is due to the delay only, the equation (1.1) can be oscilla-
tory without any delay at all, i.e., in the case T(t) = t. Figuratively speaking, two
factors contribute to the oscillatory character of (1.1): the presence of the delay and
the second order nature of the equation. The conditions (1.5)—(1.6) and (1.7)-(1.8)
illustrate the role of these factors taken separately.

In the present paper, developing the ideas of [7], we obtain integral oscillation
criteria for (1.1) where the joint contribution of the above mentioned factors is
presented. These criteria are formulated in terms of solutions of certain integral
inequalities and enable us to obtain new effective sufficient conditions for the oscil-
lation of (1.1) generalizing (1.5)~(1.8) not only in the case of delay equations, but
for ordinary differential equations as well. Several examples illustrate their worth.

In Section 2 a number of lemmas is given showing consecutive steps of our rea-
soning. Section 3 is dedicated to oscillation criteria caused by the presence of the
delay. We show that these criteria have essentially first order character by reducing
the problem of oscillation of (1.1) to that of a first order delay differential equation.
In Section 4 we formulate a general oscillation theorem and some of its corollaries
more convenient for obtaining effective sufficient conditions. In section 5 we obtain
Hille type effective oscillation conditions for (1.1) which are due to its second order
nature.

In what follows it will be assumed that the condition

+00
(1.12) f T(s)p(s)ds = +o0

is fulfilled. As it follows from Lemma 4.1 in [8], this condition is necessary for (1.1)
to be oscillatory. The paper being devoted to the problem of oscillation of (1.1),
the condition (1.12) does not affect the generality.

2. PRELIMINARY LEMMAS

Lemma 2.1. Let (1.12) be fulfilled, u : [to, + 00[—]0, 400 be a positive solution of
(1.1) and T = 7_,,(to). Then

(i) o/(¢) > 0, u(t) 2 tw'(t) fort 2 i

(ii) u is nondecreasing on [T, +oof, while the function t — u(t)/t is nonincreasing
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on [T, +oo[;

(iii) for any function v : Ry — R satisfying

(2.1) v(t) <t for t€ Ry, v(t)—+co as t— +00,
we have

(2.2) u(T(t)) = 7/ (t) u(v(t)) for t2 max{T, v _,, (to)},
where

) (0 ={ SR

i () S vt):

Proof In view of (1.2) it is obvious that u'(t) > 0 for ¢ > 0. Let p(t) =
u(t) — t/(t). Since p'(t) = —tu’(t) 2 0for t 2T, we have either u(t) —tu'(t) >0
for ¢ > T or u(t) — tw/(t) < O for t > t; with some t; > T. To prove (i), it suffices
to show that the latter is impossible. Indeed, otherwise

(uif))’ _ tu’(t)tz— u(t) >0 for t=>t,

whence u(7(t)) > c7(t) for ¢ >ty = 7_,,(t1) with some ¢ > 0. The equation (1.1)
then yields

oo “+co
u'(tz) = /j p(s)u(r(s))ds = c/ p(s)7(s)ds

t2
which contradicts (1.12). Thus (i) is proved. (ii) is an immediate consequence of
(i), and (iii) follows from (ii). The proof is complete.

Remark 2.1. Without the condition (1.12) the following weaker versions of (i) and
(iii) are valid (see [20], Lemma 1 and [2], Lemma 2.1, respectively): for each 0 <
v < 1 there is Ty = T such that u(t) > ytu!(t) and u(7(t)) = v7,(t) u(v(t)) for
t > T.,. It should be noted that in the applications below these versions would be
sufficient.

Lemma 2.1 (i) implies
(2.4) w(r(t)) = 7(t)w'(r(t)) for t2T.
This inequality, however, can be improved.

Lemma 2.2. Let (1.12) be fulfilled, u : [to, + 00[—]0, +oo be a positive solution of
(1.1) and T = 7,_,,(to)- Then

(2.5) u(r(t)) = 7 () (@) for t=7_,)(T),
where

)
(2.6) To(t) = 7(t) + /T er()p(e)de for t27_,(T).



OSCILLATION OF SECOND ORDER LINEAR DELAY DIFFERENTIAL EQUATIONS 5

Proof. Integrate the identity (u(t) — tu' @) = tp)u(r(t)) fromT to 7(t) 2 T
and use (2.5) to get

()
w(r(®) = T () + fT ep(E)u(r(E)de for t>7 (D).

To estimate the last integral, use Lemma, 2.1(iii) with v(t) = ¢, Lemma 2.1 (i) and
the nondecreasing character of u’. We get

7(t) (2) T(t) 2
/ £p(E)u(r(£))dE > f (E)p(Eyu(E)dE = [ er(E)p(En (€)dE >
T T T
7(t)
> ( ] Ef(E)p(E)dE) J(r@) for ter_, (D).

T

The last two inequalities imply (2.5). The proof is complete.
Lemma 2.2 immediately implies

Lemma 2.3. Let (1.12) be fulfilled, u : [to, + 0[]0, +00] be a positive solution
of (1.1) and T = 7_,(to). Then the function z : [T,+oco[—]0,+00| defined by
z(t) = u/(t) is a positive solution of the differential inequality

(2.7) z'(t) + 70 (H)z(T(t)) £ 0,
where 7. is defined by (2.6).

The estimate (2.5) is essential for the results of Section 3. Being more exact
than (2.4), via Lemma 2.3 it will enable us to improve the criteria (1.7) and (1.8).

The following four lemmas are crucial in proving the general oscillation theorem
in Section 4, especially Lemmas 2.5 and 2.7 giving important estimates. Note be-
forehand that a continuous function v : [T} +0o[—]0, +o0| (w : [T, +00[—]0, +00[)
is a solution of the integral inequality (2.8) (integral inequality (2.11)) if it satisfies
(2.8) ((2:11)) for t = 7_,,(T) (- = u{_l)(T)). The same is true for the integral
equations (2.17) and (2.18). Note also that solutions of these integral inequalities
and equations are necessarily positive.

Lemma 2.4. Let (1.12) be fulfilled, u : [to, + 0o[—]0, +o0[ be a positive solution
of (1.1) and T = 7_,,(to). Then the function v : [T, +00[—]0,+00] defined by

v(t) = %%-?l is a solution of the integral inequality

(2-8) v(t) 2 exp { f Zt) 77 (€) p(§)v(§) dE} , 127 (D)

Proof. We have v(t) = ﬂz%f)l)- for t > T, where, according to Lemma 2.3, zis a
positive solution of (2.7). If we rewrite (2.7) as

2.9) i;—((g < - (Op)ut) for t27,(T)

and integrate from ¢ to 7(t), then we get (2.8) thus completing the proof.
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Lemma 2.5. Let (1.12) be fulfilled, u : [to, + 0o[—]0, +c0| be a positive solution of
(1.1) and T = 7,_,,(to). Then there exists a solution v : [T, +00[—]0, +oo[ of (2.8)
such that

t
(2.10) wE)'S exp{ JREGICEG d&}u’(t} for t2s27_, (T).

5
Proof. By (2.9)
u’ (t)
uT(t)— < —rp(B)p(t)u(t) for t2T_,, (1)
where v is a solution of the (2.8). Integrating this inequality from t to s, we get
(2.10) thus completing the proof.
Lemma 2.6. Let a continuous function v : Ry — R satisfy (2.1), u : to, + co[—
10, +-00[ be a positive solution of (1.1) and T = 7,_,,(to). Then the function w :

[T, +00[—]0, +00| defined by w(t) = “1(:’((:)) ) is a solution of the integral inequality

v(t) t
e woz [ {ow [ P OPE(O & ds, 2 v, (D)

where 7/, is defined by (2.3).
Proof. If we write (1.1) as

(2.12) (W' (@) = —p(t)ig%:))l u'(t) for t>T,

then we have

(2.13) u'(t) = v/ (T) exp {— .[r p(€) —t%%g—)df} ds ort2 T,

v(t) s =
(2-14) u(v(t) = u’(T)-/.T exp {—/T p(€) -t%:((gi))‘)d&} ds fort > v_1(T).
Dividing (2.14) by (2.13) and using (2.2), we get (2.11). The proof is complete.

Lemma 2.7. Let a continuous function v : Ry — R satisfy (2.1), u : [to, + co[—
10, +c0[ be a solution of (1.1) and T = 7_,, (to). Then there ezists a solution w :
[T, +00[—]0, +00| of (2.11) such that

(2.15) u(t) > (t + /:ST/,,{S)p(S) w(s) ds) u'(t) for t>T.

Proof. Integrate the identity (u(t) —tu’ ) = tp(t) u(r(t)) fromT to t =2 T and
use (2.2) to get

(2.16) u(t) = tu’(t)—i—jt p(s)mu'(s)dsz

T ? u'(s)

(t + f:sny(s)p(s) w(s) ds) u'(t) for t > T,

v
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where, according to Lemma 2.6, w is a solution of (2.11). Thus (2.15) holds and
the proof is complete.

Since (1.12) is necessary for the oscillation of (1.1), its violation via Lemmas
2.4 and 2.6 imply the existence of solutions of (2.8) and (2.11). The following two
lemmas give more exact results which will permit us to do without the condition
(1.12) in Section 4.

Lemma 2.8. Let (1.12) be violated. Then the integral equation corresponding to
(2.8)

(2.17) v(t) = exp {f;) 7 (8) p(s)u(s) ds}

has a bounded solution.

Proof Let M > 1 be an arbitrary number. There exists § > 0 such that
exp(6M) < M. Since (1.12) is violated, there exists Ty = 0 such that f,l;: (L +
1)7(s)p(s)ds < 6, where L = f0+°° 7(s)p(s)ds. We claim that for any T > To (2:17)
has a solution v satisfying 1 < v(t) £ M for t > T. To show this, consider the
bounded convex closed set V = {v € C([T,+oof) : 1 £ v(t) £ M} in the space
C([T, +oo[) of all continuous on [T',+co[ functions with the topology of uniform
convergence on every finite interval, and consider the operator @ on V defined by

exp {f:(t) 7. (8) p(s) v(s) ds} for ¢ 2 7 (),

o= { Q@) frToStS Ty,

Since

T(8) 7(8)
j er()p(E)de < 7(s) [ (&)p(€)de < Lr(s),
T 1]

it can be easily checked that Q maps V into itself and satisfies all the conditions of
the Schauder-Tychonoff fixed point theorem (see, &.8., [3], pp.161-163). The fixed
point of Q obviously is a solution of (2.17). The proof is complete.

Lemma 2.9. Let (1.12) be violated and a continuous function v : Ry — R satisfy
(2.1). Then for all sufficiently large T' the integral equation corresponding to (2.11)

(2.18) w(t) = | e { / 1 (6)9(6) W(E)d«ﬁ} ds

T

has a solution w such that w/v is bounded.

Proof. Let M > 1,6 >0and Tp = 0 be as in the proof of Lemma 2.8. Then
for any T > To, (2.18) has a solution w satisfying v(t) < w(t) < My(t) for
t > Tp. Indeed, using the inequality 7/, (f) v(t) < 7(t), we get convinced that the
set V = {w € C([T, +oo[) : v(t) S w(t) < M v(t)} and the operator Q defined on
V by

4 ep { 177 (©) PO (E) de} ds for t v (D),

= { Q)7 (™)) for T St < vy(T)
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satisfy all the conditions of the Schauder-Tychonoff fixed point theorem. As above,
the fixed point of @ is a solution of (2.18). The proof is complete.

3. OsciLLATIONS CAUSED BY THE DELAY

In this section oscillation results are obtained for (1.1) by reducing it to a first
order equation. Since for the latter the oscillation is due solely to the delay, the
criteria hold for delay equations only and do not work in the ordinary case. The
section is independent of the general oscillation Theorem 4.1 and is based only
on Lemma 2.3. It should be observed, however, that by means of lower a priori
asymptotic estimates for v (as in Section 5 for w) Theorems 3.3 and 3.5 (unlike
Theorem 3.4) could be deduced from Corollary 4.2 below.

Lemma 2.3 immediately implies

Theorem 3.1. Let (1.12) be fulfilled and the differential inequality (2.7) have no
eventually positive solution. Then the equation (1.1) is oscillatory.

Theorem 3.1 reduces the question of oscillation of (1.1) to that of the absence of
eventually positive solutions of the differential inequality

()
3.1) z'(t) + (T(t) + fT €T(£)P(E)d£) p(t)z(7(t)) < 0.

So oscillation results for first order delay differential equations can be applied since
the oscillation of the equation

(3.2) u'(2) + g(t)u(6(t)) =0
is equivalent to the absence of eventually positive solutions of the inequality
(3.3) u'(t) + g(t)u(6(t)) <0

This fact is a simple consequence of the following comparison theorem deriving the
oscillation of (3.2) from the oscillation of the equation

(3.4) v'(t) + h(t)v(a(t)) =0
We assume that g,h : Ry — Ry are locally integrable, 6, : Ry — R are

continuous, §(t) < t, a(t) < t for t € Ry, and 6(t) — +oo, o(t) — +oo as
t — +o00.

Theorem 3.2. Let
(3.5) g(t) = h(t) and 6(f) < o(t) for t € Ry,
and let the equation (3.4) be oscillatory. Then (3.2) is also oscillatory.

Corollary 3.1. Let the equation (3.2) be oscillatory. Then the inequality (3.3) has
no eventually positive solution.
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Proof. Suppose, to the contrary, that there exists a positive solution u: [tg, +oo[—
R of (3.3). Then u is a solution of the equation v'(t) + h(t)v(6(t)) = 0, where
h(t) = —;L%;%))—) > g(t). According to Theorem 3.2, the equation (3.2) must have a
nonoscillatory solution which contradicts to the hypothesis of the corollary.

In the case §(t) = o(t) Theorem 3.2 can be found in [5] (Theorem 3.1), and in
the general case but under the additional restriction o(t) <1t in [12] (Theorem 2.8).
Since these restrictions are not imposed here, we present the proof, which, in our
opinion, is interesting by itself.

Proof of Theorem 3.2. Let, to the contrary of the assertion of the theorem, (3.2)
have a nonoscillatory solution u : [tg, +co[— R which is supposed to be positive.
In the space of all continuous on [tg, +oof functions with the topology of locally
uniform convergence consider the set V' consisting of all continuous v : [to, +oo[— R
satisfying

v(t) = u(ty) for to <t <T,

(3.6) u(t) < v(t) Sulto) for t2T,

v(a(t))
v(t) u(t)

where T = §_,,(t0). V is nonempty (u € V) and bounded. Moreover, it is convex

since

(3.7) 1<

i (o (#) +(1=Nvz (o (@) _ A [ - 1—)\}'1 v1(a(t))
Avp (8) + (1= A) vz (t) vo(t) |va(t)  wi(t) v1(t)

L= X [ A1 —)\]’1 va(o (1))
v1(t) [w2(t) v (t) uo(t)
Define the operator Q on V by

u(to) exp {— f:o h(s)ﬂl%ﬁ)né;s'} for 4 =T,

v)(t) =
Q) { u(tg) for g <t<T.
Clearly Q(v)(t) < u(to) for t > to. On the other hand, by (3.5) and (3.7) we get

for vy, v €V, t>T.

Q(v)(t) = u(to) exp {— ];: g(s) ugf((s?)ds} =u(t) for t>T,

so (3.6) is fulfilled with Qu instead of v. The same is true for (3.7) since, by (3.5)
and (3.7), we have

QWE®) __ [ [* sl
LS Qo - p{famh(s’ o(s) ds}s

‘ u(8(s) , | _ ulé@)
exp {fa(t) g(s)—as—)—ds} =0 br 12T

Thus QV C V. Besides, standard arguments show that T is completely con-
tinuous in the topology of uniform convergence on every finite segment. Hence

IA
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the Schauder-Tychonoff fixed point theorem implies the existence of vp such that
Quo = vo which obviously is a nonoscilatory solution of (3.4). The obtained con-
tradiction proves the theorem.

Turning to applications of Theorem 3.1, we will use it together with the criteria
(1.9) and (1.10) to get

Theorem 3.3. Let

t T(s)
(3.8) K := limsup f (T(S) + fo ﬁr(«s)p(é)df) p(s)ds > 1

t—+00 (%)
or
. 7 1
69)  k=lminf [ . (v-(s) + [ er(g)p(ads) p(s)ds > -

Then the equation (1.1) is oscillatory.

To apply Theorem 3.1, it suffices to note that: (i) (1.12) is fulfilled since otherwise
k = K = 0; (ii) since 7(t) — +oo as t — +00, the relations (3.8)-(3.9) imply the
same relations with 0 changed by any 7" > 0.

Remark 3.1. Theorem 3.3 improves the criteria (1.7)~(1.8) of R. Koplatadze (7] and
J. Wei [20] mentioned in the introduction. This is directly seen from (3.8)-(3.9)
and can be easily checked if we take 7(t) =t—"To and p(t) = po/ (t — 7o) for t = 27,
where the constants 7o > 0 and po > 0 satisfy 7opo < 1/e. In this case neither of
(1.7)-(1.8) is applicable for (1.1) while both (3.8)(3.9) give the positive conclusion
about its oscillation. Note also that this is exactly the case where the oscillation is
due to the delay since the corresponding equation without delay is nonoscillatory.

Remark 3.2. The criteria (3.8)—(3.9) look like (1.9)—(1.10), but there is an essential
difference between them pointed out in the introduction. The condition (1.10) is
close to the necessary one since according to [9] if L < 1/e, then (3.2) is nonoscilla-
tory. On the other hand, for an oscillatory (1.1) without delay we have k = K =0.
Nevertheless, the constant 1/e in Theorem 3.3 is also best possible in the sense that
for any € €]0,1/e] it can not be replaced by 1/e — ¢ without affecting the validity
of the theorem. This is illustrated by the following

Example 3.1. Let ¢ €]0,1/¢], 1 —ee < f < 1, 7(t) = ot and p(t) = B(1 -
B)a~Pt=?, where a = eF~1. Then (3.9) is fulfilled with 1/e replaced by 1/e — €.
Nevertheless (1.1) has a nonoscillatory solution, namely u(t) = t°. Indeed, denoting
c=pf((1- B)a—?, we see that the expression under the limit sign in (3.9) is constant
and equals ac|Ine| (1 + ac) = (B/e) (1 + (B(1 - B))/e) > Ble>1/e—e.

There is a gap between the conditions (1.9)—(1.10) and (3.8)—(3.9) when 0 <
I<1/e,l<L,and 0 <k <1 /e, k < K, respectively. In the case of first order
equations there arises an interesting problem of filling this gap, i.e. of finding of a
function f : [0,1/€] — [1/e, 1] such that the condition L > f(l) would guarantee
the oscillation of (3.2). Moreover, it makes sense to seek for an optimal function in
the sense that L < f(I) would imply nonoscillation. A number of papers are devoted
to this problem (see, for example, [4] and the references therein). Using results in
this direction, one can derive various sufficient conditions for the oscillation of (1.1).
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According to Remark 3.1, neither of them can be optimal in the above sense but
nevertheless they are of interest since they cannot be derived from Corollary 4.2
of the general oscillation theorem. We combine Theorem 3.1 with the best to our
knowledge result in this direction ([4], Corollary 1) to obtain

Theorem 3.4. Let K and k be defined by (3.8)=(3.9), 0 < k <1/e and

1 1-k-VI—2k—F?
(%) 2 ’

K>k+)\

where A(k) is the smaller root of the equation
(3.10) X = exp(kX).
Then (1.1) is oscillatory.

Finally we give a criterion which follows from Theorem 3.1 and a simplified
version of Theorem 3 in [10]. For the sake of simplicity we will formulate the
theorem in terms of 1o (see (2.6)).

Theorem 3.5. Let k be defined by (3.9), 0 < k < 1/e and

t

5(t)
lim sup p(s)70(s) exp ()\(k) ./5 | p(E)Tg(&)dE) ds > 1,

t—+o0 J§(¢) (s

where A(k) is the smaller root of the equation (3.10). Then (1.1) is oscillatory.

4. GENERAL OSCILLATION CRITERIA
In this section we prove a general oscillation theorem for (1.1). We first mention

two criteria which are immediate consequences of Lemmas 2.4 and 2.6, respectively.

Proposition 4.1. Let (1.12) be fulfilled and the integral inequality (2.8) have no
solution. Then the equation (1.1) is oscillatory.

Proposition 4.2. Let (1.12) be fulfilled and there exist a continuous function v :
R. — R satisfying (2.1) and such that for any T > v,_,,(0) the integral inequality
(2.11) has no solution. Then the equation (1.1) is oscillatory.

Now we formulate our main result.

Theorem 4.1. Let there exist continuous functions v,a, §: Ry — R such that 0,6
are nondecreasing,

(4.1) y(t) <t, T(t) <8(t) <t, 0<co(t) < §(t) for t>=0,
v(t),o(t) = +oo as t— +oo,



12 R. KOPLATADZE, G. KVINIKADZE, AND LP. STAVROULAKIS

and for any T > 7_,,(0), any positive solution v of (2.8) and any positive solution
w of (2.11) the inequality

b ®

£ 7(s)
(4.2) lim sup { fé 2(s) (T(s)+ fT £T/»(€)P(§)w(6)d€) x

&(t)
x exp ( ]6 - <s>p(§)v(¢*)dg) ds+

(s)

o(t) +o0 .
+ (J(t)+[T S’%(E)IJ(fc")w(E)dé)ft o (€)P(E)d§} >1

holds, where ... is defined by (2.6) and 7/, /o by (2.3). Then the equation (1.1) is
oscillatory.

Proof. First of all note that the condition (4.2) implies (1.12). Indeed, suppose
that (1.12) is violated. Then by Lemmas 2.8 and 2.9 the integral equations (2.17)
and (2.18) have solutions vy and wp, respectively, such that vg(t) < M and wp(t) <
M 7(t) with some M > 1. Using these inequalities along with the negation of
(1.12), one can easily see that for v = o and w = wp the left-hand side of (4.2) is
zero. This proves that (1.12) holds.

Suppose now that, contrary to the assertion of the theorem, the equation (1.1)
has a nonoscillatory solution u : [to, +-0o[— R which we may and will assume to be
positive. Put T = 7_,, (to). By Lemma 2.1

(4.3) u(7(t)) = 7/, (t)u(o(t)) for t2 max{T, o _,,(to)}-
On the other hand, according to Lemmas 2.5 and 2.7 and because u’ is nonincreas-

ing, there exist positive solutions v and w of the integral inequalities (2.8) and
(2.11), respectively, such that -

(4.4) u'(1(s)) > w'(8(s)) = E(v)(s,t)u'(6(2)) for t=s27_, (.,
(4.5) u(r(s)) = Fr(w)(s)u'(7(s)) for s=7_,, (1),

46)  u(o(t) = Fo(w)(t)w'(c(t)) 2 Folw)(t)e'(5(2) for t 2 o-1(T);

where for any u: Ry — R we set

5(2)
E@)(s,t) = e ( [5 RCEGES de) ,

I

p(t)
Flu(w)(?) (u(t) + fT €77,(€) p(§) w(§) d&) :
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Integrating (1.1) from 6(¢) to +oco and taking into account (4.1) and (4.3)-(4.6)
along with the nondecreasing character of u, o, and &, we get

+00

W (5(t)) > js | PO s+ j p(s) u(r(s)) ds >

’ +00
> [ HOF @ EN s +ue) [ Telelple)ds>

t +co
> u'(8(t)) { fa o p(s)Fr(w)(s) E(v)(s,t)ds + Fo (w)(t) ft 7/0(s)p(s) dS}

for large t. But this contradicts (4.2). The proof is complete.

Remark 4.1. Propositions 4.1 and 4.2 can be considered as included in Theorem 4.1
by assuming formally that if there are no such v and w, then (4.2) is automatically
fulfilled.

Theorem 4.1 and its corollaries below enable one to obtain effective sufficient
conditions for the oscillation of (1.1) by means of a priori asymptotic lower estimates
for v and w (or by means of establishing of nonexistence of v or w which in a way
may be considered as the existence of a lower estimate identically equal to +00).
We will derive nontrivial estimates of this type in Section 5.

Now we formulate some corollaries of the theorem. We begin with one which
shows the joint effect of the delay and the second order nature of (1.1) in its simplest
form.

Corollary 4.1. Let T be nondecreasing and

t—co

lim sup {ft p(s)7(s)ds + T(t) /+oo p(s) ds} - F
(t) t

Then the equation (1.1) is oscillatory. -

Taking the first term in (4.2) with »(t) = ¢ and using the obvious estimate
w(t) >t — T, we obtain

Corollary 4.2. Let there erist a nondecreasing function 6 : Ry — R satisfying
7(t) < §(t) <t fort > 0 and such that for any solution v of (2.8) the inequality

t &(t)
lim sup {f p(s)7o(s) exp (f ‘fo(ﬁ)P(ﬁ)U(ﬁ)dﬁ) ds} >1
t—oo | Ja(t) 5(s)

holds, where Ty is defined by (2.6). Then the equation (1.1) is oscillatory.

Corollary 4.2 shows the contribution of the delay to the oscillation of (1.1). As
it has been pointed out in Section 3, some of (but not all) the results of that section
could be derived from it.

Analogously, taking the second term in (4.2) with v(t) =t and using the estimate
w(t) >t — T, we obtain
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Corollary 4.3. Let there erist a nondecreasing function o : R, — R satisfying
o(t) <7(t) <t fort >0, , lijx} o(t) = +0o and such that the inequality
—+00

lim sup { (cr(t) + fom s7(s) p(s)ds) f+m p(s) ds} p % |
t—co 0 t

holds. Then the equation (1.1) is oscillatory.

In the case of ordinary differential equations Corollary 4.3 implies the following
test.

Corollary 4.4. If

¢ +00
4.7) hiriil:p { (t + /0 s p(s)ds) /t p(s) ds} >,
then the equation
(4.8) u"(t) + p(t)u(t) =0

is oscillatory.

Corollary 4.4 yields the following improvement of Hille’s criteria (1.3) and (1.4)
in the class of functions p satisfying
Co
(4.9) p(t) = ) for large t.

Corollary 4.5. Let (4.9) be fulfilled with co €]0, 1] and

+0o0 d 1
limsu t/ s)ds > ;
oLl p(s) T e

Then (4.8) is oscillatory.

The condition (4.7) improves Hille’s criteria even in the case where cp = 0. This
is illustrated by the following

Example 4.1. Let the sequences of real numbers {ax}z2; and {bx}32, be such
that ay < bg < agy1 for k=1,2,..., ax T 400 and b T 400 as k — oo, and

fm % =0, lim —% =0

k—oo by k=—0co QK41
2 2
(for instance, we can take ar = ok by = 2—"%‘—?1) Let & E]O,gl‘g‘ﬁ[ and
£ €]0, 1[ be such that (1 —§) (2 — §) (1 — &) > 1. Then for the function p defined by

Lt

128 for t €lak,bk|
-y B hiy k=1,2,..

p(t) { 0 for t €lbk,ak+1] ’ .
both conditions (1.3) and (1.4) are violated while (4.7) is fulfilled. This means that
Corollary 4.4 gives a positive answer to the question of oscillation of the equation
(4.8) even in the case where both Hille criteria fail.



OSCILLATION OF SECOND ORDER LINEAR DELAY DIFFERENTIAL EQUATIONS1S

Indeed, we have

+00 +oo

limsupt p(s)ds < limsupt ds=1-6<1
t—+o0 £ t—+400 t S
and
“+co +oco 1 — Fy +oo i=—=3
lim inf ¢ p(s)ds < lim bkf z—ds = lim bk/ 5—ds =
t—+00 t k—co br 8 k—oo ey
_ pim 3200 g

k—oo  Qk+1

On the other hand, denoting a} = ax+¢&(bx—ax), we have ax/aj; — 0 and af /br — €
as k — co, so that

t +0o0
lim sup (t + f 82 p(s)ds) / p(s)ds >
t—-+co 0 t
ok N EEF
> limsup a.}:+f (1-46)ds f T8 2
k—oc0 ak a; §

k

Zlikmsup(l—i—(l—ﬁ) (1—%’5))(1—5)(1—%) >
- 2(2_5)(1-5)k(1—s)>1.

The following corollary will be used in Section 5 (we take 6(t) =t and o = v).

Corollary 4.6. Let there exist a nondecreasing continuous functionv : Ry — R
such that 0 < v(t) < 7(t) < t, v(t) — +oo ast — +oo and for any T 2 v _,, (0)
and any solution w of (2.11) the inequality

v(t) +00
limsup | v(t) + f s7,(s) p(s)w(s)ds f T, (8) p(s)ds > 1
t—oo T t

holds, where 7/, is defined by (2.3). Then the equation (1.1) is oscillatory.

Corollary 4.6, like Corollary 4.3, exhibits the role of the factors not depending
on the presence of the delay. Next section is devoted to this topic.

5. OSCILLATIONS DUE TO THE SECOND ORDER NATURE OF THE EQUATION

In this section, using Corollary 4.6, we will derive oscillation criteria for (1.1)
which are due to the second order nature of the equation. They generalize Hille’s
criterion (1.4) to delay equations.

Theorem 5.1. Let a €)0,1],7(t) > at for large t and

+00
(5.1) liminf ¢ / plsde> ele);
where
(5.2) c(a) = max{a® A1 —-A): 0< A< 1}

Then (1.1) is oscillatory.
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Proof. Let T > 0, v(t) = at, so that 7/, = 1, and w be a solution of (2.11). By
Corollary 4.6, it suffices to prove that the inequality

at +o0
(5.3) lim sup (at + f sp(s)w(s) ds) / p(s)ds>1
t—+o00 T t

holds. This is the case if limsupat f:'m p(s)ds > 1, so we can suppose that

t—+00

+o0
(5.4) tf p(s)ds < 1/a for large t.
¢
Put
+o0
(5.5) A = ltim;mf'w(t) (f p(s) ds) ;
—00 t

From (2.11) it is clear that w(t) > at =T, so A > acle) > 0. We claim
that A, > 1. Indeed, suppose to the contrary that A+ €]0,1] and take co €
] e(), hmmft f p(s)ds[. By (5.1) and (5.5) for any A €0, \.[ there is to = T
such tha.t

(5.6) w(t) (/;m p(s) ds) > A, tf;m p(s)ds > c¢o fort >to.

Hence by (2.11) we have for ¢ > to/

(5.7) w(t) = /:L exp {)\ jj »(€) (f+mp(C) dc) - dg} Ho—
:/:ex"{“ %}@:
- ( [0 dc)“‘ f a - p(g)dc) s

B =% (ot
d A 0
> ([ o) Co———_‘ —
Therefore by (5.6)

w) [ PO ( f o) T, o)

- (t /t 00 dg) 11 D L o(1) 14;0 +0(1).

Passing here to lower limit, we get

o I—ACO

> 2
Ae 2 1-X
Since A €]0, A,] was arbitrary, we have

(5.8) "IN (1 = \) 2 ¢ > c(a),
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which contradicts (5.2). The obtained contradiction shows that A, > 1. Therefore
(5.7) for any A €]1, A,] yields

we) [0z 125 ([ wou) T - o]

which tends to +oo as t — +oo. This means that A, = +oco and so in the last
inequality A can be any number from ]1, +oco[. Rewrite this inequality as

w2 25 (¢ erp(c)atc)—A [157 ~ (@]

Hence, in view of (5.4), it follows the existence of M > 0 and #; > tp such that
w(t) > Mt* for t>t,

ie, forany A > 1

(5.9) w(t) >t* for large t.

Using (5.9) for A = 2 along with (5.2) and (5.4), and integrating by parts, we
get for large ¢

(5.10) fm sp(s)w(s)ds = /at s3p(s)ds >
i

t1/2

> —tﬁ;sd (/s+oop(€)d€) -
. (t1/2 /t:op(é)dﬁmai/o:oop(f) dg_,.f:; (/3”"10(5”5) ds) >

zt(—i-i-/;mﬂa—)ds) =t(—i~+c(q)lna+£2a)lnt).

83 172 S
Hence, in view of (5.1), we have (5.3). The proof is complete.

Remark 5.1. The constant c(a) is best possible in the sense that in (5.1) the strict
inequality cannot be replaced by the nonstrict one without affecting the validity
of the theorem. Indeed, denoting by Ao the point where the maximum in (5.2) is
attained, we can see that the function u(t) = t1=*0 is a nonoscillatory solution of
the equation u”(t) + (c(a)/t*)u(at) = 0.

Remark 5.2. We have ac(a) = max{o*A\(1—A): 0 <A <1} <max{A(1-2):0<
A< 1} =1/4 for 0 < a < 1. Therefore for any €)0,1[ Theorem 5.1 improves the
result of Wong (1.5).

Remark 5.3. Using Corollary 4.6 with v(t) = ¢, we could analogously to Theorem
5.1 derive the criterion (1.7).

Now consider the case where (5.1) is violated.
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Theorem 5.2. Let a €]0,1],7(t) > at for large t,

+o0
(5.11) lim nf ¢ / p(s)ds = co €]0, ¢(a)]
and
at +00 =1 +00
(5.12) Egliip (at + ,\ofo sp(s) (/; p(€) df) ds) /t p(s)ds > 1,

where c(c) is defined by (5.2) and Ao is the smaller root of the eéuation
(5.13) a* A1 - A) = cg.
Then (1.1) is oscillatory.

Proof. In view of (5.11)—(5.13) one can choose ¢* €]0,co[ close enough to o,
£ > 0 small enough and o > 0 large enough for the inequalities

+00
t/ p(s)ds>c* for t=1o
¢

and
1

(5.14) limsup (ozt + (A" —g) _/:t sp(s) (f:cop(&) df)_ ds) f:oop(s)ds 51

t—<+0c0

to hold, where A\* is the smaller root of a1 -A) =c".
Let w be a solution of (2.11) with v(t) = of. Defining A. by (5.5) and acting as
in deriving the inequality (5.8), we get

a* 1IN (1 =\) =,

whence we get A. > A*. This means that
=1

w(t) > (A* —¢) (/jm (&) d&) ) for large t.

Therefore (5.14) and Corollary 4.6 imply that the equation (1.1) is oscillatory. The
proof is complete.
In the class of the functions p satisfying

(5.15) p(t) = :—g— for large ¢,

we can get the following result which is similar to Theorem 3.4 in the sense that it
connects the upper and lower limits of the same expression.

Theorem 5.3. Let 7(t) > ot for large t and (5.15) be fulfilled, where €]0, 1],
co €]0, c(e)] and c(a) is defined by (5.2). Let, moreover,

+00 d 1
(5.16) lim sup ¢ /; p(s)ds > ot

{—-+co

where \g is the smaller root of (5.13). Then (1.1) is oscillatory.
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Proof. Let T > 0 and w be a solution of (2.11) with v(t) = at. Denote the
left-hand side of (5.16) by p*. By (5.16) there is a sufficiently small & > 0 such that
p*a(l+ Ao — &) > 1. According to Corollary 4.6 it suffices to prove that

Ao— €

(5.17) w(t) = t for large t.

Denote fo = ltim_'_inf w(t)/t (from (2.11) it follows that 8 > a > 0), so for any
—+00
B €0, Bo] there is to > T such that w(t) > Bt for ¢ = to. Suppose first that Bco > 1.

Then (2.11) yields
ot t at Beo
I RO
to s 5 to s

al—HBeog to L

S — -1 fi t>1 L

Beg —1 ((at) or t 2t/

So (5.17) is fulfilled. Analogously, if Bco = 1, then w(t) > tln(at/tg) for large t,
and again (5.17) holds. Finally, let Sco < 1. Then, from (5.18), we get

w(t) _ ol=Feo to \ 1P
SEL g =l = forl :
t = 1= fe (1 (cxt or large t

v

(5.18) w(t)

I

Since 3 €]0, Bo| is arbitrary, passing to lower limit we obtain that A = Bpcp satisfies
o*~1A(1—2) > co. Hence Bocy > Ao which means that (5.17) is fulfilled. The proof
is complete.

Finally we consider the case where the delay, roughly speaking, is like t=.

Theorem 5.4. Let o €]0,1[ and 1t1m+1.£1§ 7(t)t~* > 0. Then the condition

+oo
lim inf ¢ f p(s)ds >0
t -~ -

t—400
is sufficient for (1.1) to be oscillatory.

Proof. The proof is quite analogous to that of Theorem 5.1, so it will be only
sketched. Let T > 0, v > 0 be such that 7(¢) > ~t* for large ¢ and w be a solution
of (2.11) with »(t) = vt*. Define A. by (5.5) and suppose first that al. < 1. Let
A < A, and 8 > 0 be such that t* t+°° p(s)ds > ( for large t. Proceeding as in
deriving (5.7), we obtain

1-A

+oco A l—aA +0oa
we) [ sz B2 ([T r0d) e s 2
Anl—al +c0 1=
> (*f 2(¢) dC) £230-9) [140(1)] 2 Ot~ [1 4 o(1)] — +o00

as t — +oo, where C > 0 is a constant. We were able to write the last inequality
since like in (5.7) we can assume that ¢* ft+°° p(s)ds <1 for large t and therefore
the (1 — A)-th power can be estimated from below independently of whether A > 1
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A < 1. Thus we have )\, = +0o which contradicts our assumption that aA. < 1.

Thus aA, > 1 and we can take A €]1/a, A[ to get

as
of

1-A

+oo A~ l=ah “+o0
we) [Ta0acx T ([T a0d) 100 +ow] = oo

t — 400, where C > 0 is a constant. Therefore A. = +o0o. Hence as in the proof
Theorem 5.1 we conclude that (5.9) holds for any A > 0. Using this inequality

with A = 2 and writing down the chain of inequalities analogous to (5.9) (instead

of
ar

M

#1/2 one has to take t®/2), we can ascertain that the conditions of Corolllary 4.6
e fulfilled with v(t) = vt*. The proof is complete.
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